Skip to main content

Molecule vs Molecule


In a number of recent posts I’ve looked at the ways that nanotechnology coatings like those produced by P2i can be used to make everything from mobile phones to trainers water repellent – and at the natural examples of this same phenomenon – but I haven’t really considered the science behind this technology – which is all about the electromagnetic interaction of molecules.

We’re probably most familiar with this kind of interaction in an attractive way. As I write this, there is a heavy frost outside. Water is turning from liquid to solid. Yet were it not for a particular molecular interaction, this would be an impossibility because water would boil below -70 °C. There would be no liquid or solid water on the Earth and, in all probability, no life.

The interaction that makes life possible is hydrogen bonding. This is an electromagnetic attraction between a hydrogen atom in one molecule, and an atom like oxygen, nitrogen or fluorine in a second molecule. When hydrogen is bonded to one of these atoms there is a relative positive charge on the hydrogen and a relative negative charge on the oxygen (say). This happens because the hydrogen atom’s only electron is in its bond, leaving a positively charged ‘end’ to the molecule, while the oxygen atom has four outer electrons not in its bonds, which are repelled away from the electrons in the bonds, giving it a negative charge.

Put two molecules alongside each other and the positively charged hydrogen is attracted to the negatively charged oxygen in its neighbour. The two molecules are drawn towards each other. There’s a force pulling the molecules together, and that means if you want to break them apart – say to boil liquid water – then it takes more energy that it otherwise would, as you have to overcome that force. Result: a much higher boiling point.

This inter-molecular attraction also accounts for another oddity that means aquatic creatures can survive in icy cold weather. Solid water – ice – is less dense than the liquid form, so it floats, leaving the water beneath still liquid. It’s sometimes said this is a unique property of water. It’s not – acetic acid and silicon, for instance, are both denser as a liquid than a solid – but it is unusual. It happens because the six-sided shape of a water crystal won’t fit with the way the hydrogen bonds pull the hydrogen of one water molecule towards the oxygen of another. To slot into the structure, these bonds have to stretch and twist, pulling water molecules further apart than they are in water’s most dense liquid form.

Hydrogen bonding would not be a good mechanism to consider if you wanted to keep liquids off an object. It would tend, rather, to keep them in place. So to produce a water resistant coating, you are looking instead for molecules that won’t attract. I have a personal interest in this. My father was an industrial chemist and was part of the team that developed one of the world’s first fabric conditioners. He used to bring home experimental jars of turquoise gloop from work to try out at home. And the principle behind a fabric conditioner or fabric softener is the opposite of cosy hydrogen bonds.

Such conditioners work by making clothes dirty with a special kind of dirt. Conditioners leave a thin residue on the fabric fibres. These molecules have several roles, but the significant one here is that they tend to repel each other, making the detailed structure of the fibres fluff up and giving the fabric a softer, more luxurious feel, lubricating the fibres when they move against each other.

This is very much fabric conditioner on fabric conditioner interaction. But to achieve a water-repellent coating we need to combine aspects of the two effects to get an interaction between the molecules in the coating and the water molecules that we are trying to get away from a product as quickly as possible.

P2i’s nanocoating is a polymer with molecules that are long-chains which can be either hydrocarbons or poly fluorinated . These start out as individual monomers – the molecules that will eventually be bound together in a polymer – which are exposed to a low power radio signal at 13.56 MHz to produce a plasma, a gas-like collection of ionised monomers, which then polymerize directly on the object being coated. It’s not a case of applying a polymer like sticking on an outer coating, but rather of creating it in place on all surfaces of the object to be protected.

Water forming droplets on a tissue with a P2i coating
The molecular action here is rather more subtle than in a fabric conditioner. The coated surface has a low surface energy – significantly lower than that of water. Surface energy is a way of describing how much ability the surface of a substance has to produce interactions. P2i’s coating is unusually reluctant to interact, giving it a very low surface energy, around 1/3 that of the non-stick substance PTFE (Teflon). This means that the water is much more attracted to itself, through hydrogen bonding, than it is to the surface of the material. The result is that rather than wetting the surface – spreading out as a thin layer – the water forms spherical drops, because most of the attraction the water molecules feel is towards other water molecules and with all this inward attraction the natural result in the formation of a sphere.

As the water is in self-contained droplets on the surface, it will roll off in these beads without interacting with the material. This is why you can have the kind of remarkable result shown in the Richard Hammond TV show where he pulled a ringing phone out of a toilet and it still worked. The water was not given a chance to wet the surface and short out or corrode the electronics.

We tend to think of a substance in terms of its macro properties – those that we can see and feel. But we can only properly understand what’s going on by taking a close up look. When it comes to how stuff works, it’s a molecule versus molecule world.

Images courtesy of P2i

Comments

Popular posts from this blog

Why I hate opera

If I'm honest, the title of this post is an exaggeration to make a point. I don't really hate opera. There are a couple of operas - notably Monteverdi's Incoranazione di Poppea and Purcell's Dido & Aeneas - that I quite like. But what I do find truly sickening is the reverence with which opera is treated, as if it were some particularly great art form. Nowhere was this more obvious than in ITV's recent gut-wrenchingly awful series Pop Star to Opera Star , where the likes of Alan Tichmarsh treated the real opera singers as if they were fragile pieces on Antiques Roadshow, and the music as if it were a gift of the gods. In my opinion - and I know not everyone agrees - opera is: Mediocre music Melodramatic plots Amateurishly hammy acting A forced and unpleasant singing style Ridiculously over-supported by public funds I won't even bother to go into any detail on the plots and the acting - this is just self-evident. But the other aspects need some ex

Is 5x3 the same as 3x5?

The Internet has gone mildly bonkers over a child in America who was marked down in a test because when asked to work out 5x3 by repeated addition he/she used 5+5+5 instead of 3+3+3+3+3. Those who support the teacher say that 5x3 means 'five lots of 3' where the complainants say that 'times' is commutative (reversible) so the distinction is meaningless as 5x3 and 3x5 are indistinguishable. It's certainly true that not all mathematical operations are commutative. I think we are all comfortable that 5-3 is not the same as 3-5.  However. This not true of multiplication (of numbers). And so if there is to be any distinction, it has to be in the use of English to interpret the 'x' sign. Unfortunately, even here there is no logical way of coming up with a definitive answer. I suspect most primary school teachers would expands 'times' as 'lots of' as mentioned above. So we get 5 x 3 as '5 lots of 3'. Unfortunately that only wor

Which idiot came up with percentage-based gradient signs

Rant warning: the contents of this post could sound like something produced by UKIP. I wish to make it clear that I do not in any way support or endorse that political party. In fact it gives me the creeps. Once upon a time, the signs for a steep hill on British roads displayed the gradient in a simple, easy-to-understand form. If the hill went up, say, one yard for every three yards forward it said '1 in 3'. Then some bureaucrat came along and decided that it would be a good idea to state the slope as a percentage. So now the sign for (say) a 1 in 10 slope says 10% (I think). That 'I think' is because the percentage-based slope is so unnatural. There are two ways we conventionally measure slopes. Either on X/Y coordiates (as in 1 in 4) or using degrees - say at a 15° angle. We don't measure them in percentages. It's easy to visualize a 1 in 3 slope, or a 30 degree angle. Much less obvious what a 33.333 recurring percent slope is. And what's a 100% slope